A pathway towards the use of fossil fuels for power generation and transportation

Karlsruhe Technical Institute April 9th 2019

Rodney Allam 8 Rivers capital and Net Power rjallam@hotmail.co.uk

creating tomorrow's infrastructure... sustainably

Summary of the talk

- -Background
- -Development of the Allam Cycle
- -Detailed design considerations
- -Equipment needed
- -Demonstration plant
- -Hydrogen production
- -Hydrogen fuel for vehicles

-OXY-FUEL conversion of existing coal fired power stations.coal fired power stations

-CONTINUING USE OF FOSSIL FUELS WITH 100% CO₂ CAPTURE IS POSSIBLE

CO₂ level in the atmosphere

Continuing increase in atmospheric CO₂ levels from fossil fuels

Overview

The Energy Outlook considers a range of scenarios...

Primary energy consumption by fuel

Carbon emissions

Billion toe

8 RIVER

Billion tonnes CO₂

*Renewables includes wind, solar, geothermal, biomass, and biofuels For full list of data definitions see p122 12

NETPOWER

2010 BP Energy Outcok @ BP p.l.c. 2018

*Industry excludes non-combusted use of fuels

2018 BP Energy Outook @ BP p.l.c. 2018

Overview

Increasing global prosperity drives growth in energy demand...

Billions

Growth in GDP and primary energy

Growth in urban population by region

© BP p.l.c. 2018

8 RIVE

8 RIVERS

Liquid fuel use in cars is broadly flat...

NETPOWER

Changes in liquids demand from cars: 2016-2040

CURRENT OPTIONS FOR CLEAN FOSSIL FUEL POWER PRODUCTION

ALL lead to a 50% to 70% increase in electricity costs

What is the Allam Cycle?

• The Allam Cycle is

- A semi-closed, supercritical CO₂ Brayton cycle,
- That uses oxy-combustion with natural gas, gasified coal, or other carbonaceous fuels.
- Historically, CO₂ capture has been expensive, whether using air to combust or oxycombustion.
- The Allam Cycle makes oxycombustion economic by:
 - Relying on a more efficient core power cycle.
 - Recycling heat within the system to reduce O₂ and CH₄ consumption, and associated costs of the ASU.

8 RIVERS OF NETPOWER

Flow Diagram of the Natural Gas Allam Cycle

Overview of the Allam Cycle. Heat input as fuel plus low grade heat

- Oxy-combustion of natural gas with O₂/CO₂ mixture; adiabatic temp approaching 2000°C (K)
- 300 bar and 1150°C at the turbine inlet after mixing of combustion exhaust gas with pre-heated recycle CO₂ (A)
- 720°C turbine exhaust preheats
 300 bar Recycle CO₂ (B-C)
- Separation of condensed water followed by CO₂ compression and pumping (C-I)
- 20% of the total heat input is derived from the ASU and CO₂ Recycle Compressor heat of compression which assists in heating recycle CO₂ (I-J)
- Pure CO₂ product produced between 30 bar and 300 bar.

NETPOWER

- A. Turbine Inlet
- B. Turbine Outlet
- C. Cold End HX
- D. Cooling to Ambient
- E. Compression
- F. Intercooling

- G. Compression
- H. Compressor Aftercooler
 - Supercritical Pumping
- J. Low Temp. Recuperation
- K. High Temp. Recuperation

ECONOMICS OF POWER PRODUCTION USING NATURAL GAS

	NET Power	Combined Cycle (without carbon capture)	Combined Cycle with Carbon Capture
Efficiency (portion of energy of gas vs. energy of produced electricity)	57% (1150ºC)	55% to 62%	38% to 51%
Percent of CO ₂ Captured	100%	0%	85%
NO _X emissions (lb/MWh)	0	0.025-0.026	0.025-0.026
"Levelized" cost of electricity without CO ₂ revenues (\$/MWh)	\$62.9 to \$69.4	\$64.0 to \$72.8	\$91.6 to \$134.2
"Levelized" cost of electricity <i>with</i> CO ₂ revenues (\$/MWh) at \$20/ton	\$55.5 to \$62.0	\$64.0 to \$72.8	\$85.6 to \$128.3

8 R I V E R S MITPOWER

Allam Cycle for Coal or Waste Hydrocarbon Fuels

The Allam Cycle can be used with a range of solid fuels while maintaining the benefits of the core cycle.

NETPOWER

Efficiency	LHV	HHV
Gross Turbine Output	76.3%	72.5%
Coal prep & feed	-0.2%	-0.2%
ASU	-10.2%	-9.7%
CO ₂ , Syngas Comp.	-9.1%	-8.7%
Other Auxiliaries	-6.5%	-6.1%
Net Efficiency	50.3%	47.8%

- Lowest cost electricity from coal with 100% CO₂ at 28bar to 300bar taken directly from the CO2 recycle compression.
- All impurities are removed from the coal gas prior to combustion or as H₂SO₄ and HNO₃ after combustion.
- Most of the sensible heat in the cleaned coal gas plus steam following water quench is recovered at fuel value in the Allam cycle; directly improving efficiency.
- Process simplification significantly reduces cost vs. IGCC

Other Applications of the Allam Cycle using natural gas

Countries which import LNG can heat the compressed LNG to pipeline temperature and liquefy the ambient temperature turbine exhaust eliminating the CO_2 compressor and increasing the effective efficiency of a 1000Mw power station to about 66% (LHV basis)

Steam from a supercritical coal fired boiler at typically 300bar and 600°C can be superheated to 720°C in the recuperator heat exchanger giving a large increase in the coal power station efficiency and capturing 100% of the CO₂ produced from the additional fuel required to superheat the steam.

CO2 captured at typically 150bar pipeline pressure can be injected into oil wells for enhanced oil recovery. Associated natural gas separated from the oil which will contain a large quantity of CO_2 can be used directly as fuel for the Allam cycle power system allowing efficient capture and recycling of the CO_2 .

Natural gas containing say 25 mol% H_2S can be used as fuel in the Allam cycle. We have developed an effective H_2S removal technology applicable to both natural gas and coal derived POX gas

 CO_2 captured can be used for enhanced coal bed CH_4 production.

8 RIVER

Increased Performance, Lower Capex, Reduced Complexity Lead to Much Lower LCOE Projections for Allam Cycle Coal

<u>Notes</u>

- Lu et al. Oxy-Lignite Syngas Fueled Semi-Closed Brayton Cycle Process Evaluation (2014)
- Total Plant Cost and O&M costs were estimated for lignite-fired system in conjunction with EPRI; AACE Class 5 estimate
- Cost data for other technologies is taken from NETL baseline reports (Vol. 3, 2011)

NETPOWER

15

NET Power's Is Demonstrating the Allam Cycle process

50MWth gas plant in La Porte, TX

- Scaled down from 500MWth design
- Construction nearing completion; commissioning in progress.

Includes all core components

- Combustor/turbine, heat exchangers, pumps/compressors, controls, etc.
- Grid connected and fully operable

\$140 million (USD) program

8 RIVE

- Includes first of a kind engineering, all construction, and testing period
- Partners include Exelon Generation, CB&I, 8 Rivers and Toshiba

Technical Development of the NET Power Demonstration Plant

- McDermott (CB&I) led detailed design, procurement and construction and is designing the commercial plant.
- Exelon operate the facility.
- 8 Rivers has provided the proprietary process design, dynamic simulation, and control philosophy with ongoing development.
- Toshiba has developed the novel turbine and combustor.
- The demonstration main process heat exchanger is supplied by Heatric.
- Oxygen is supplied via pipeline from an adjacent Air Liquide ASU.

Technology for supercritical CO₂ Turbine

Gas Turbine Technology

250MW Class 1300-1500°C **Steam Turbine** Working fluid; CO₂ Pressure;2MPa⇒30MPa 250MW Class CO₂ Turbine Combustor Technology 1300-1500°C Working fluid; CO₂ Pressure;2MPa⇒30MPa Steam Turbine Technology

USC& A-USC Pressure; 24-31MPa Temperature; 600-750°C Temperature \Rightarrow 1150°C

NETPOWER

Turbine & Combustor for Super Critical CO₂ Cycle Temp. 1150°C Press. 30MPa

50MWth Combustor

- 1. First of a kind in view of high pressure and working fluid.
- 2. Stable diffusion flame can be used since there is no NOx emission.
- 3. No need of using innovative cooling scheme since temperature is within experience of existing gas turbine.
- 4. Rig test in order to validate operation has been completed.

Combustor for Demonstration Plant

The Toshiba Turbine and Combustor (cont.)

Left: Test stand for a 5 MWth combustor operating at 300bar

Below: Rotor and Outer Casing of Demonstration Turbine (Courtesy: Toshiba)

NETPOWER

8 RIVE

- Fusion of a USC steam turbine (double casing design) with the design of gas turbine (cooled and coated blades). The inner casing is internally cooled.
- NG and oxidant mixture of 20% $O_2 \& 80\% CO_2$ is mixed with 700°C recycle CO_2 to provide a turbine inlet temperature of 1150°C at 300 bar
- 5MW combustor test with 700°C oxidant flow confirmed calculated performance. Diffusion flame, no premixing gives stable combustion conditions.
- 200MWth turbine unit scaled to 50MWth by partial arc admission to the turbine blades, minimizing risk for the commercial-scale turbine
- The use of pure O₂ means very low NO_x formation.
 Trace NO_x will be formed from fuel-derived N₂ in the natural gas.

The high pressure CO₂ turbine

NET Power 5Mw first combustor test

Mixture A

Mixture B

O2 cencentratio Medium

Mixture C

Combustion tests under these conditions have been underway by Toshiba since 2013.¹

Tests have been conducted under various pressures and CO_2/O_2 ratios all of which were successful and agreed with theoretical models.¹

Additionally combustor metal temperatures matched well with predictive models.¹

8 RIVF

Temperature

Low

1. Iwai, Y., Itoh, M., Morisawa, Y., Suzuki, S., Cusano, D., & Harris, M., "Development Approach to the Combustor of Gas Turbine for OXY-fuel, Supercritical CO_2 Cycle", Proceedings of ASME Turbo Expo, **2015**, GT2015-43160

NETPOWER

The High Pressure Combustor Test Vessel

HEATRIC DIFFUSION BONDED PLATE FIN HEAT EXCHANGER

- Plates have chemically etched channels and are stacked then diffusion bonded
- Grain growth occurs between plates during the diffusion bonding process
- Very compact and potentially low cost system
- Headers welded to the outside of the blocks
- Multiple blocks welded to form batteries

8 RIVE

617 alloy allows operation at >300bar and >700°C

JETPOWER

Size and Weight Savings

NET Power is near-term deployable – HX

Heat exchanger design is well within Heatric's capabilities

• NP has been discussing recuperators with other manufacturers as well.

HX designed following ASME guides:

- ASME Sec. IID function of design temperature.
- <u>ASME Sec. VIII, DIV. 1</u> pressure vessel design code
- <u>ASME Sec. III NH, DIV. 2</u>- fatigue and creep in high temperature (developed for nuclear power generation extreme conditions).

Design of HX train limits nickel alloys to only hottest section, 316 (lower cost material) can be used for the majority while maintaining strength and corrosion resistance

Main Process Heat Exchanger

- The demonstration Printed Circuit Heat Exchanger has been supplied by Heatric
- Large SA/V allows for high P & T operation with tight approach.
- Stacks of 1.6mm thick plates are photo masked then chemically etched to produce complex passage arrangements
- The plates are diffusion bonded at high T to form a homogeneous monolithic block.
- The main recuperator operates over a range from 50°C to 705°C. It has a multistream configuration in 4 sections
 - 617 alloy for T > 550°C
 - 316L alloy T < 550°C.

8 RIVE

 The demonstration recycle compressor aftercooler is also PCHE type

FTPOWER

Low Temperature Section

Aftercooler being lowered into position

Demonstration plant main process heat exchanger network (Courtesy: Heatric)

Part of the recuperative heat exchanger battery and the recycle CO₂ high pressure pump

Direct contact cooler for turbine discharge gas and the CO_2/O_2 oxidant compressor

The 300MWe Commercial Natural Gas Plant is Currently in Pre-FEED Design

NET Power 300 MWe Commercial Plant (CH4 fuel)

Net power output	300 MW at ISO Conditions
Natural gas thermal input	526MW
LHV Efficiency	57.0%
Oxygen consumption	3627 MT/day (contained)
CO ₂ Produced	2494 MT/day at 150 bar
Turbine outlet flow	923 kg/s
Turbine inlet condition	300 bar at 1158°C
Turbine outlet condition	30 bar at 727°C (approximately)

- A detailed pre-FEED design study is underway.
- Major equipment is in an advanced stage of readiness:
 - **Turbine and Combustor:** The demonstration turbine size allows verification of the design for the 526 MWth commercial turbine.
 - Heat Exchanger: increase in size and quantity of cores for the commercial system.
 - ASU: The 3627 MT/day, 99.5% O₂ ASU has been demonstrated at this size by all major suppliers.
 - Compressors: The physical linkage of the CO₂ compressor and turbine is within the size capability of major compressor vendors.
 - *Pumps:* The multistage CO₂ pumps are demonstrated at the design duties required.

Excellent performance at high ambient conditions: 31C Air, 289 MW net

Hydrogen Production Process Overview

A Proven pressurized Process That Converts Natural Gas Oxygen and Steam to Hydrogen

Hydrogen Production Reactions

Partial Oxidation $CH_4 + \frac{1}{2}O_2 \leftrightarrow CO + 2H_2$ endothermic $CH_4 + 2O_2 \leftrightarrow CO_2 + 2H_2O$ exothermic $CO + H_2O \leftrightarrow CO_2 + H_2$ exothermic

Convective Heat Reforming $CH_4 + H_2O \leftrightarrow CO + 3H_2$ endothermic $CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$ endothermic

Water-Gas Shift CO + $H_2O \leftrightarrow CO_2 + H_2$ exothermic

Syn-gas System For Hydrogen Production

H2 can be produced at up to 90bar pressure

Low temperature CO2 removal by condensation near the triple point

GE F Class Turbines Have Over 30 Million Hours Of Operations, the Largest, Most Experienced Fleet of High Efficiency Gas Turbines

NETPOWER

	PSI Wabash	Tampa Polk	Exxon Singapore	Motiva Delaware
Turbine	7FA	7FA	2x6FA	2x6FA
H ₂ (% vol)	24.8%	37.2%	44.5%	23.0%
LHV (BTU/ft ³)	209	253	241	248
H ₂ /CO Ratio	0.63	0.80	1.26	0.65
Diluent	Steam	N_2	Steam	H_2O/N_2

Feasibility of high H₂ fuel combustion with low emissions has been demonstrated at F class conditions using proven syngas combustor design; reliability, availability and maintainability can be equivalent to natural gas turbines

8 RIVE

GE Hydrogen Combustion Experience GE data

INTEGRATED POWER SYSTEM WITH AN ALLAM CO2 CYCLE PLUS A HYDROGEN FUELED COMBINED CYCLE

ALLAM cycle integrated with a GE PG9371(FB) combined cycle power syste

Stand alone ALLAM cycle	net power o	utput	290Mw	
Stand alone GE PG9371(F	В)			
Combined cycle net powe	er output		432.25	Mw
Gas turbine fuel is 50% H2+50% N2 molar concentration				
Total net power output	697Mw	Cycle efficience	cy (LHV)	50.9%
CO2 production (100% ca	pture) at 150	bar pressure	6437M	etric tons per day
O2 consumption (99.5% purity)		4	979Metr	ic tons per day
Approximate capital cost erected £1150/kw installed net capacity				
net electricity cost		4.53pence/	Kwhr	

Capital charges plus operations 17%/year, Natural gas ± 5 /million BTU (LHV), 8000hr/year, CO₂ credit ± 25 /metric ton,

IFTPOWER

37

8 RIVE

Commercial Hydrogen Fuelling Installations

Supplied to major oil companies

8 RIVERS OF NETPOWER

Underground Liquid Hydrogen Fuelling Tank – Washington, DC, USA

Liquid Hydrogen Tanker

capacity 3600 kg liq H₂

Oxy-fuel Technology for CO₂ Capture - Definition:

Fuel + oxygen with nitrogen rejected in an air separation plant

Diluent flow of CO_2 or H_2O or recycled flue gas with fuel to oxygen concentration ratio controlling combustion temperature

Independent control of heat output and combustion temperature

Low power consumption 95% O₂ plants and simple SOX and NOX removal

Minimal existing boiler and turbine plant modification. Demonstrated burner operation. Low risk system

Schematic of Supercritical PF Oxyfuel

Power Plant With CO₂ Capture

8 RIVERS OF NETPOWER

NOx and SO₂ Reactions in the CO₂ Compression System

 SO_2 , NOx and Hg can be removed in the CO_2 compression process, in the presence of water and oxygen.

SO₂ is converted to Sulphuric Acid, NO₂ converted to Nitric Acid:

• NO + ½ O ₂	=	NO ₂	(1) Slow
• 2 NO ₂	=	N ₂ O ₄	(2) Fast
• 2 NO ₂ + H ₂ O	=	$HNO_2 + HNO_3$	(3) Slow
• 3 HNO ₂	=	$HNO_3 + 2 NO + H_2O$	(4) Fast
• NO ₂ + SO ₂	=	$NO + SO_3$	(5) Fast
• $SO_3 + H_2O$	=	H_2SO_4	(6) Fast

Rate of Reaction 1 increases with Pressure to the 3rd power

 only feasible at elevated pressure. Adiabatic CO₂ compression to 15bar with heat to BFW is economic.

No Nitric Acid is formed until all the SO₂ is converted

Pressure, reactor design, residence times, and NO concentration (>100ppm) are important

H2SO4 >25% concentration converted to gypsum

NETPOWER

CO₂ Compression and Purification System – Inerts removal and compression to 110 bar

CONCLUSIONS

•Cost of electricity from the Allam cycle using natural gas fuel with 100% CO_2 capture is about the same as the best NGCC system with no CO_2 capture.

•CO₂ is produced as either a high pressure fluid for pipeline transportation or as a liquid for shipping in tankers.

 Cost of electricity using the coal based Allam cycle with 100% CO₂ capture is about 17% lower than a 600°C, 300bar steam cycle with no CO₂ capture.

• The demonstration Allam cycle plant at Laporte USA is currently nearing full power operation.

• Hydrogen can be produced at up to 90 bar pressure with 100% CO2 capture at an efficiency of over 75%, comparing the lower heating value of H2 product and natural gas feed.

•Hydrogen fuel for gas turbines and fuel cells for vehicles and decentralised power with 100% CO₂ capture.

• Hydrogen production can be integrated with large scale Allam cycle power production

•OXY-FUEL conversion of existing coal fired power stations offers low risk option for dealing with existing CO2 emission.

8 RIVERS OF DETPON